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A Comparison of Using APPL and PVM for

a Parallel Implementation of an Unstructured

Grid Generation Program*

T. Arthur t M. Bockelie _

Abstract

In this report we describe our efforts to parallelize the VGRIDSG unstructured sur-

face grid generation program. The inherent parallel nature of the grid generation algo-

rithm used in VGRIDSG has been exploited on a cluster of Silicon Graphics IRIS 4D

workstations using the message passing libraries Application Portable Parallel Library

(APPL) and Parallel Virtual Machine (PVM). Comparisons of speed up are presented

for generating the surface grid of a unit cube and a Mach 3.0 High Speed Civil Trans-

port. It was concluded that for this application, both APPL and PVM give approxi-
mately the same performance, however, APPI, is easier to use.

1. Introduction

For many engineering applications, using distributed computing and a cluster of high per-

formance work stations is a cost effective alternative to using a supercomputer. Historically,

engineering applications were coded to run in serial mode on supercomputers because only

a supercomputer could provide the large amounts of memory and fast computational speed

required to perform such simulations. Due to the heavy work load of most supercomputers

today, the elapsed time to perform a simple analysis can be far greater than the CPU time

to perform the required computations. In distributing computing, programs are designed to

execute the time consuming portions of the computations in parallel across one, or more,

computers. In recent years, high performance workstations have become available that can

provide the memory, inter-machine communication and computational speed required to

*This work was performed under NASA contract NAS1-19038
tAssociate Member of the Technical Staff, Computer Sciences Corporation, Hampton, VA
$Senior Member of the Technical Staff, Computer Sciences Corporation, Hampton, VA



perform such computations. Furthermore, high performance workstations can be obtained

at a fraction of the cost of a supercomputer. Our principal objective in the present work

is to investigate the use of distributed computing to perform surface grid generation for a

realistic configuration.

In this report we describe our work on parallelizing the VGRIDSG unstructured surface

grid generation program. Two software packages, APPL and PVM, are used to distribute

the program over a cluster of Silicon Graphics IRIS (SGI) 4D workstations. Each package is

described and performance results are given for generating the surface grid for a unit cube

and a Mach 3.0 High Speed Civil Transport (HSCT). In addition, recommendations for using

each message passing library are reported.

This report is organized as follows: Sections 2 and 3 contain an overview of APPL and

PVM respectively. Section 4 is a description of the distributed architecture used. Section 5

contains a description of the VGRIDSG unstructured surface grid generation program. Sec-

tion 6 briefly describes the modifications to the serial code in order to distribute the program.

section 8 contains grid generation timing results and Section 9 compares the two software

packages. Section 10 contains concluding remarks.

2. Description of APPL

Application Portable Parallel Library (APPL) is a message passing library developed by

the Internal Fluid Mechanics Division at the NASA Lewis Research Center. The purpose of

the software is to provide a basic set of portable subroutine calls for message passing over

a variety of MIMD (Multiple Instruction Multiple Data) architectures. The software is free

(subject to NASA's conditions for software distribution) and can be obtained by sending

e-mail to Angela Quealy at fsangQkira.lerc.nasa.gov. The results presented in this report

are for version 2.2, last updated March 31, 1992. The documentation provided with APPL

consists of a nine page ASCII README file and several detailed man pages.

By using APPL, the user can access the local processors of a machine and/or homogeneous

processors over a network of connected workstations. These independent parallel processes

communicate only through message passing. For a multiple processor shared memory ma-

chine, such as a SGI 440, APPL will use semaphores to block access to memory locations.

The use of semaphores creates the illusion of a distributed memory architecture. This is an

important portability issue since many massively parallel machines have distributed mem-

ory. For example, the Intel iPSC/i860 Hypercube consists of processors that have their own

private memory and thus must exchange data by message passing.

Messages can be sent either synchronous or asynchronous. When using synchronous

messages, the process will wait until the message has completed before executing the next

instruction. An asynchronous message will immediately execute the next instruction without

waiting for the message to complete. The syntax for a synchronous message in Fortran is

call ssend(msgtype, msg, length, proc_id) where msgtype is an integer to specify the message



type, msg is the message being sent, length is the length of the message in bytes and proc_id

is the process number to which the message is being sent. To receive a synchronous message,

the routine call srecv(msgtype, msg, length) is used. The syntax for an asynchronous message

is call asend(msgtype, msg, length, proc_id). Similarly, the routine call arecv(msgtype, msg,

length) should be used to receive asynchronous messages. Synchronous messages must be

received synchronously and asynchronous messages must be received asynchronously. APPL

also has routines for getting message information, global operations and timing.

To create a distributed computing environment for APPL, the user must create a proces-

sor description file. This file, procdefby default, contains the user's login id (username), the

target machine name (hostname), the working directory (work_dir), the number of processes

(num_procs) and the executable name of the processes (executable@ The following is an

example procdeffile for SGI workstations:

# this is a comment line

# procdeffor shared memory architecture

username hostname work_dir num_procs ezecutables

On SGI workstations, invoking the compute command runs the ezecutables in the procdef

file. Before ending execution, the last call in the user's APPL program should be pend 0

which cleans up the semaphores and environment. If the program terminates abnormally

before calling pendO, the user MUST release the semaphores and shared memory manually.

The resources can be released by executing the following commands (do NOT execute these

commands as root):

ipcs -m

ipc8 -s

I fgrep SLOGNAME I awk '{print "ipcrm -m', $2 }' ] sh
l YgrepSLOGNAMEI awk '{print "ipcrm -s", Se }' I sh

These commands query the allocated shared memory (ipcs -m) and semaphores (ipcs -s).

The pipe, fgrep $LOGNAME, prints only the resources allocated by the user. The pipe,

awk '{print "ipcrm -m', $2 } ', gets the process id for the resources allocated and uses the

command ipcrm to deallocate the shared memory (ipcrm -m) or the semaphores (ipcrm -s).

Note that the user will need to execute these commands on each machine on which the

processes were running.

3. Description of PVM

Parallel Virtual Machine (PVM) is a heterogeneous message passing library developed at

the Oak Ridge National Laboratory (ORNL). PVM allows the utilization of a heterogeneous

network of parallel and serial computers as a single computational resource. It is a library

(two libraries if you use Fortran) and a daemon process. The idea is to couple together

multiple resources in a parallel fashion to use the best properties of a particular machine for
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an application with moderately large granularity. The results presented in this report are

for PVM version 2.4.1, last updated May 31, 1992. The documentation for PVM consists of

a Postscript file that must be obtained separately from the software. PVM is free software

and can be obtained by sending the e-mail message send index from pyre to the automated

server netlib@ornl.gov.

The PVM processes communicate through the daemons created on each machine. Over a

heterogeneous network, PVM uses the external data representation (XDR) to send messages

over different architectures. PVM has the capability to recognize a homogeneous network

and will not perform the XDR conversion in these situations (ref. 1).

For PVM, messages are sent asynchronous and received synchronous. A message is sent

in three stages: initializing the send buffer, putting the message in the buffer and sending

the message. The syntax for sending a floating point Fortran message is:

call finitsend(}

call fputnfloat(msg, length, info)

call fsnd("executable\O", proc_id, msgtype, info)

where msg is a floating point message, length is the message length, info is an error code,

executable is the name of the executable of the PVM process, proc_id is the processor the

message is being sent and msgtype is an integer to specify the message type. To receive this

message, the following routines are used:

call frcv(msgtype, info)

call fgetnfloat(msg, length, info)

The call to frcv will not continue until the message arrives in the buffer. PVM also allows

messages to be sent in bytes. However, sending bytes will only work if the machines have

the same byte ordering scheme.

PVM contains routines for obtaining information on messages and some synchronization

routines: Unlike APPL, PVM does not havei timing function or global operation routines.

To make a distributed computing environment for PVM, the user must create a file similar

to the APPL procdeffile. This file contains the machines in the PVM, the user's login id for

that machine (username) and the location of the PVM daemon (specified by dx = ) (ref. 2).

PVM searches the directory $HOME/pvm/HOST where HOST is the PVM name of the

machine (see ref. 1 for names of machines) for the executable process. The following is an

example of a file describing the PVM:
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# this is a comment

# an asterisk in the first column sets the default

* dz= ftmp/pvm/pvmd

* lo= username

host1

host2

To execute the PVM in batch mode, type the command pvmd host_file &. To run pvmd

interactively, type pvmd -i host_file.

If the PVM daemons are successful in starting, the message pvm is ready appears. If

the PVM returns a message pvmd garbled response or expected pvmd but got ", this usually

means that PVM can not read the password file. To remedy this situation, try using the pw

option in the host file of checking your .rhosts file.

Once the daemons are ready, it is convenient to start the PVM processes using a host

program, otherwise each process must be started individually on each machine. After the

PVM processes have completed, the PVM daemons can be killed. When in interactive mode,

the user can query the daemons on running processes. If one of the daemons in the PVM

network abnormally terminates, then all of the PVM processes will be killed by PVM. Unlike

APPL, the user does not need to clean up resources.

I/O in PVM is redirected to the user home directory. Therefore, the user should specify

full path names of files. PVM does not have the capability to specify a working directory,

as does APPL.

4. Hardware

The VGRIDSG program has been distributed over five SGI workstations located at the

NASA Langley Numerical Geometry Laboratory (GEOLAB). The distributed computer con-

sisted of the following workstations: an IRIS 4D/440, two IRIS 4D/420 and two IRIS 4D/320.

These workstations are Ethernet connected on a inner hub of the Langley Computer Network

(LaRCNET). The table below shows the expected performance of the workstations. In the

table, DP Linpack is a double precision Linpack benchmark which utilized multiple CPU's

on machines with more than one CPU (ref. 3).

CPU's Clock DP Linpack Memory

4D/440 40 MHz 42 MFLOPS 96 MB

4D/420 40 MHz 23 MFLOPS 64 MB

4D/320 33 MHz 20 MFLOPS 48 MB

For this study, the FORTRAN compiler used was ]'77 version 3.4.1 and the operating system

used was IRIX release 4.0.1.



5. Overview of VGRIDSG

VGRIDSG is an unstructured surface grid generation program developed at GEOLAB

(ref. 4). The code is based on the surface grid generation routines contained in VGRID3D

(ref. 5) but has been modified to use a surface definition defined by networks of bi-cubic

Hermite patches. Using the bi-cubic patches results in a much smoother surface than could

be obtained with VGRID3D, but also required substantially more CPU time to compute

the surface grid. To compute the surface grid for the HSCT used in this study (over 12,000

triangles) requires about 10 minutes of CPU time (serial mode) on the SGI 4D 440 worksta-

tion.

VGRIDSG generates the surface grid using an advancing front method which has a large

degree of inherent parallelism. In the advancing front method, the grid points are first placed

on the curves that constitute the edges of the surface patches. After discretizing all of the

edge curves, the interior of the patches are filled with triangles. Note that the interior of a

patch can be filled with triangles independently of the other patches. Thus, it is possible

to compute the interior triangles of the surface patches in parallel. Because generating the

surface triangles is the most time consuming portion of the computations in serial mode,

we have focused our parallelization efforts only on this procedure. In the future, it may

be possible to investigate parallelizing other portions of the code in order to achieve even

greater improvements in the overall program speed up.

6. Modifications to VGRIDSG

To parallelize VGRIDSG required modifying the main body of the program and two sub-

routines, frontuv and bsegad. Subroutine frontuv is the main driver for computing the surface

patches. Subroutine bsegad is called by frontuv after generating the surface triangles for a

patch, and is used to store the coordinates and element connectivity of the new triangles

into global arrays. The changes in the main program and frontuv are minor in comparison

to the required changes to bsegad because bsegad contains all of the interprocessor commu-

nication that occurs in VGRIDSG. A file containing a detailed description of the changes to

the source code can be obtained upon request from the authors.

The basic changes made to the main body of the program are: adding work arrays, initial-

ization of the distributed computer, redirecting output through processor zero and passing

processor information to the subroutines. The work arrays were needed for communication

purposes. In addition, in our implementation all I/O is directed through processor zero.

The modifications to subroutine frontuv were rather minor. The changes include having

new arguments passed in from the main body of the program, parallelizing the do-loop that

controls the generation of the surface triangles in each surface patch, passing arguments to

subroutine bsegad and getting timing information for each patch for load balancing.
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The changesto subroutine bsegad were quite extensive. In our parallel implementation,

the interior triangles for the surface patches are computed on separate processors. Hence,

each processor calculates only a portion of the total data. In subroutine bsegad, the data

from the separate processors is collected and stored into global arrays. Thus, all of the

interprocessor communication takes place in bsegad. Because APPL and PVM pass messages

differently, the APPL and PVM versions of this subroutine are quite different.

7. To Run The Parallel Code

The Makefile used to compile the program was modified to include the addition of the

APPL and PVM libraries. When using PVM, it is convenient to create a host program to

start the PVM parallel processes. To run the PVM version, compile both the host and node

programs. Then start the PVM daemons using the command pvmd (see section 3). Once

the daemons are ready, then run the host program. To run the APPL version of the code,

simply type compute. The compute command will use the procdeffile to create the parallel

environment.

8. Grid Generation Timing Results

The performance of parallel programs are typically measured in terms of speed up and

efficiency. Speed up is the ratio of the sequential time to the parallel time. In other words,

the speed up of a program is (ref. 6):

s = r, (8.1)
rp

where rl is the sequential CPU time and rp is the elapsed time for the parallel version.

Perfect speed up is when the speed up S is equal to the number of processors P. The

efficiency is a measure of how well the processors are being utilized. The efficiency of the

parallel program is defined as (ref. 6):
S

, = (8.2)

From Eq. 8.2, it can be seen that the speed up is directly proportional to the efficiency.

In this report, each of the performance figures contains three curves. The first is a curve

for perfect speed up, used as a reference. The second curve is the speed up of the subroutine

frontuv, the parallel portion of the code. The third curve is the speed up of the complete

program. This last curve gives the user the expected improvement in run time for of the

parallel program. In our implementation, we have focused on only parallelizing the tasks

performed in subroutine frontuv. Thus, it is expected that the complete program will have

a lower speed up than frontuv due to the additional serial computations that are performed

elsewhere in the program.

7



The resultspresentedin this report weretaken during dedicatedtimes, in the sensethat
noother usersare loggedonto the machineand no userprocesseswereexecuting. In reality,
this dedicatedscenariodoesnot exist for everyday computing,so the readershould realize
that performancecan be significantly lower than what is reported in this report. In the
following tests, we always use the faster 400 seriesworkstations beforemaking useof the
slower300 seriesworkstations (seeSection4). In addition, the speedup calculations are
basedon the sequentialCPU time for executing the code on a single processoron a 400
seriesworkstation. Last, note that we only present results for using 1, 2, 3, 4, 6, and 12
processorsbecausein our parallel implementationwe require that the numberof patchesbe
an integermultiple of the numberof processorsused.Although this approachdoesnot allow
us to take advantageof all the availableprocessors,it doessimplify the codemodifications
requiredto alter which processorsareused.

To verify the parallel versionsof VGRIDSG, our first test casewasto generatethe surface
grid for a simpleunit cube (seeFigure 1). For this problem, eachfaceof the cubewassplit
into two patches,resulting in a total of twelve surfacepatches. In addition, the grid point
spacingwas set to a uniform value so that eachpatch generatesapproximately the same
number of triangles. Becauseeachpatch requiresabout the samenumber of calculations,
the cubeproblem hasa near perfect load balance.

Figures2 and3 showthe speedup versusprocessorsfor the cubeproblemusingAPPL and
PVM, respectively. Both packagesshow approximately the sameperformance. Comparing
the curvesfor the completeprogramand subroutinefrontuv, it can be seen that, as expected,

frontuv has a greater speed up than the complete program. The performance curves for the

complete program and frontuv approach maximum speed ups of 8.1 and 6.2, respectively.

The curves are linear up to four processors, because all four processors reside on one machine.

The curve is slightly less than linear for the six processor case because the two additional

processors reside on a second machine and this adds some communication overhead. For

the 12 processor test, the efficiency decreases due to using a combination of processors with

different clock cycles from five machines.

Our second test case was to generate the surface grid for a Mach 3.0 High Speed Civil

Transport (HSCT). Here, eighteen patches were used to define the vehicle surface, sting and

far field computational boundaries (see Figures 4 and 5). Illustrated in Figures 6 and 7 are

the speed up versus the number of processors using APPL and PVM, respectively, for the

case of not load balancing the surface patches; that is, computing the surface patches in the

order in which they were defined. Clearly, there is little gain in calculating the grid in this

manner. To improve the performance, the grid was recomputed by re-ordering the sequence

in which the surface patches are generated in order to obtain better load balancing.

For this test we used a simple, but effective, scheme to improve the load balancing. First,

we computed a very coarse version of the surface grid that required only a small fraction

of the time required to compute the desired fine mesh. Serial timings were made for each

patch and a t]near relationship for the the increased amount of time needed to compute the

fine grid was assumed. The patches were then re-ordered in descending order based on the

estimated CPU times (i.e., compute those patches requiring the most CPU time in parallel).
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Figures8 and 9 show the effect of load balancing the problem for using APPL and PVM,

respectively. The speed up of subroutine frontuv is asymptotic to about 3.4 and the overall

speed up is asymptotic to approximately 3.0.

The test results presented here indicate that performing unstructured grid generation

using VGRIDSG may not a scalable problem. To a certain extent, this is due to the hardware

configuration on which these tests were performed. In parallel processing, the measure

of performance is affected by the slowest processor of the group. Because the 300 series

workstations are slower than the 400 series workstations, the overall performance is adversely

affected. Another aspect effecting the scalability of the problem is that in unstructured

surface grid generation the work load amongst the surface patches can be very unevenly

distributed. Based on the desired grid point spacing and type of surface definition used,

computing the grid for some patches can require substantially more time than will other

patches. For example, in the HSCT problem approximately 85% of the total execution

time is spent computing only 4 of the 18 patches. Furthermore, there is no simple means to

divide the work load of these four patches amongst multiple processors without substantially

increasing the human effort to define the problem. Clearly, many more tests using different

vehicles will be required before making a conclusion on this issue.

9. Comparisons of Using APPL versus PVM

In this report, we found that APPL has some note-worthy advantages over PVM. First,

we found it much easier to implement message passing in APPL. It takes two lines of code

to send and receive a message in APPL, but PVM takes five lines to do the same. Second,

APPL has global functions while PVM has none. In addition, APPL allows I/O redirection

but PVM does not. Last, we found it easier to execute (control) the parallel program using

APPL, because to use PVM requires starting of daemons. These properties of PVM makes it

difficult to execute batch jobs in UNIX, however, if the Distributed Queuing System (DQS)

is installed on the distributed computer, the batch scripts are significantly easier to write

(see ref. 7).

There are some drawbacks to using APPL. First, abnormal termination of the executing

processes will not release allocated resources. This could cause large portions of the memory

to be allocated to a single user rendering the workstation useless for other users until the

resources have been released. In addition, APPL is limited to a homogeneous environment.

Debugging the parallel code is difficult in both packages. Though ORNL is developing a

X Window debugger, neither package currently has a debugger.

It should be noted that both APPL and PVM are continuously being upgraded. Cur-

rently, the developers of APPL are considering a modification to allow the utilization of a

heterogeneous network. The next release of PVM, known as PVM 3.0, is scheduled to be

made available by December 1992. It appears that both packages are converging to the same

solution and will offer the same functionality at some point in the future.



10. Conclusions

In this report we have presented the results of our work on using distributed computing

to improve the performance of the VGRIDSG unstructured surface grid generation program.

The program was distributed across a cluster of high performance workstations using the

APPL and PVM message passing libraries. For the tests reported here, APPL had approxi-

mately the same performance as PVM. Based on overall ease of use, it was determined that

APPL was the better of the two software packages for this application.
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Figure 1. Coarse unstructured grid for a cube.
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Figure 3. Speed up for cube using PVM.
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Figure 4. Surface patch boundaries for upper surface of HSCT.

Figure 5. Portion of HSCT unstructured grid.
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